T. Grancha, M. Mon, J. Ferrando-Soria, J. Gascon, B. Seoane, E.V. Ramos-Fernandez, D. Armentano, E. Pardo

by T. Grancha, M. Mon, J. Ferrando-Soria, J. Gascon, B. Seoane, E.V. Ramos-Fernandez, D. Armentano, E. Pardo
Year: 2017 ISSN: DOI:10.1039/C7TA01179B

Bibliography

T. Grancha, M. Mon, J. Ferrando-Soria, J. Gascon, B. Seoane, E.V. Ramos-Fernandez, D. Armentano, E. Pardo, J. Mat. Chem. (2017) A 11032-11039, Tuning the Selectivity of Light Hydrocarbons in Natural Gas in a Family of Isoreticular MOFs

Abstract

​Purification of methane from other light hydrocarbons in natural gas is a topic of intense research due to its fundamental importance in the utilization of natural gas fields. Porous materials have emerged as excellent alternative platforms to conventional cryogenic methodologies to perform this task in a cost- and energy-efficient manner. Here we report a new family of isoreti​cular chiral MOFs, prepared from oxamidato ligands derived from natural amino acids L-alanine, L-valine and L-leucine, where, by increasing the length of the alkyl residue of the amino acid, the charge density of the MOF's channels can be tuned (1 > 2 > 3), decreasing the adsorption preference towards methane over light hydrocarbons thus improving this purification process. The validity of our rational design strategy has been proved by a combination of single-component adsorption isotherms, adsorption kinetics of CH4, C2H6, C3H8 and n-C4H10, and breakthrough experiments of binary CH4/C2H6 and CH4/C3H8 mixtures.

Keywords

Natural gas Hydrocarbons