Temperature-Dependent Supramolecular Isomerism of Lutetium-Aminoterephthalate Metal-Organic Frameworks: Synthesis, Crystallography and Physical Properties

by A. Dikhtiarenko, P. Serra-Crespo, S. Castellanos, A. Pustovarenko, R. Mendoza-Meroño, S. García-Grando, J. Gascon
Year: 2016 ISSN: DOI: 10.1021/acs.cgd.6b00274

Bibliography

A. Dikhtiarenko, P. Serra-Crespo, S. Castellanos, A. Pustovarenko, R. Mendoza-Meroño, S. García-Grando, J. Gascon, Cryst. Growth Des. 16 (2016) 5636–5645, Temperature-Dependent Supramolecular Isomerism of Lutetium-Aminoterephthalate Metal-Organic Frameworks: Synthesis, Crystallography and Physical Properties

Abstract

​Three supramolecular isomers of lutetium metal–organic framework, {Lu2(H2O)4(ATA)3·4H2O}n (Lu-ATA@RT), {Lu2(H2O)2(C3H7NO)2(ATA)3}n (Lu-ATA@100), and {Lu2(C3H7NO)(ATA)3}n (Lu-ATA@150), have been obtained from the reaction of Lu(NO3)3·6H2O with 2-aminoterephthalic acid (ATA) at different temperatures. The resulting structures of Lu-ATA metal–organic frameworks depend on the temperature applied during the synthesis, revealing a temperature-susceptible supramolecular isomerism. Single-crystal X-ray diffraction analyses suggest that new compounds with formula {Lu2(S)x(ATA)3}n (S = solvent: H2O, DMF) display different three-dimensional architectures which consist of dinuclear lutetium building units. The supramolecular isomer Lu-ATA@RT, formed at room temperature, has a pcu-net topology, while its double interpenetrated analogue Lu-ATA@100 assembles at 100 °C under hydrothermal conditions. Hydrothermal synthesis at 150 °C affords formation of the dense Lu-ATA@150 cage-like framework displaying a new hexagonal-packed net topology. All Lu-ATA isomeric phases are porous and display different gas-uptake behavior toward carbon dioxide as a function of polymeric network arrangement. The luminescent properties of Lu-ATA frameworks in the solid state as well as in suspension in the presence of different solvents reveal a solvent-dependent emission.

Keywords

N/A