In this combined in situ XAFS, DRIFTS, and Mössbauer study, we elucidate the changes in structural, electronic, and local environments of Fe during pyrolysis of the metal organic framework Fe-BTC toward highly active and stable Fischer–Tropsch synthesis (FTS) catalysts (Fe@C). Fe-BTC framework decomposition is characterized by decarboxylation of its trimesic acid linker, generating a carbon matrix around Fe nanoparticles. Pyrolysis of Fe-BTC at 400 °C (Fe@C-400) favors the formation of highly dispersed epsilon carbides (ε′-Fe2.2C, dp = 2.5 nm), while at temperatures of 600 °C (Fe@C-600), mainly Hägg carbides are formed (χ-Fe5C2, dp = 6.0 nm). Extensive carburization and sintering occur above these temperatures, as at 900 °C the predominant phase is cementite (θ-Fe3C, dp = 28.4 nm). Thus, the loading, average particle size, and degree of carburization of Fe@C catalysts can be tuned by varying the pyrolysis temperature. Performance testing in high-temperature FTS (HT-FTS) showed that the initial turnover frequency (TOF) of Fe@C catalysts does not change significantly for pyrolysis temperatures up to 600 °C. However, methane formation is minimized when higher pyrolysis temperatures are applied. The material pyrolyzed at 900 °C showed longer induction periods and did not reach steady state conversion under the conditions studied. None of the catalysts showed deactivation during 80 h time on stream, while maintaining high Fe time yield (FTY) in the range of 0.19–0.38 mmolCOgFe–1 s–1, confirming the outstanding activity and stability of this family of Fe-based FTS catalysts.